Transactional Concurrency
Control for Intermittent,
Energy-Harvesting
Computing Systems

Emily Ruppel and Brandon Lucia
June 26, 2019
PLDI 2019 -- Systems II
N

TS
Carnegie Mellon University % ,(() EEleNCt& clall\ﬁzE (I:Eo |fr{n| |<J| teGr

Charging | | Powered on

Intermittent
Energy-Harvesting '
Computing
Systems

[Capybara,

ASPLOS 2018]
~ ML/AI beyond the edge

[Sonic & Tails, ASPLOS 2019]

Intermittent devices need concurrent interrupts
Atomic
w.r.t power

} failures

S

[Alpaca,
OOPSLA
2017]

[Chain,
OOPSLA

2016]

Intermittent devices need concurrent interrupts

 Event-atomic tasks
 Multi-task transactions
3 Z. " Timely split-phase events

----q

e CoOati Motivation

 Intermittent Programming Models & Interrupts
« Problem #1: Interrupt Interrupted
« Problem #2: False Flag

e Coati Overview
 Task & Event Interaction
e Multi-Task Transactions

« Correctness
« Programming Effort
e Runtime Overhead

Prior work supports one execution context

v

Idempotent
re-execution

next_task incyY ()

W = 2

assert (X== = @

=~ 0 assert (X==Y)
next, task send ()

[Alpaca,
OOPSLA 2017]

Interrupts violate correctness assumptions

task 1ncX ()

Assumptions:

. TasMays start
fro same point next task incY ()

. Taswxecute
ide ntly task incY

W= 2
Y++

X = sense ()

assert (X==Y)
next_task send ()

[Alpaca,
OOPSLA 2017]

Problem #1: Interrupt Interrupted

Power failures can happen during interrupts

t2 =Y + 1
assert (tl==t2)
next_task send ()

Problem #2: False Flag

Conventional synchronization fails
task 1ncX()

flag = 1

Tl = X + 1
next_task incyY ()

task 1ncY

clear ()

1f (flag) return

X
Y

0
0

b return
T2 = Y + 1 e

LS V2

assert (T1l==T2)

next_task send ()

e CoOati Motivation

 Intermittent Programming Models & Interrupts
« Problem #1: Interrupt Interrupted
« Problem #2: False Flag

e Coati Overview
 Task & Event Interaction
e Multi-Task Transactions

« Correctness
« Programming Effort
e Runtime Overhead

Coati produces correct code with interrupts
for intermittent systems

Coati
Executable
Intermittent

Coati — App Device
Programmer Application Binary
App Coati Deployed *

[\.423‘“% > = E

Coati TITIT
.‘ ' Runtime

Coati serializes interrupts after scheduled tasks

transaction
M task 1ncX () |
I .
Atomic w.r.t L sensor ()
' I x++ X = sense ()
pQwer fallurets | \
8%\&,'3_]1,%%" | fnext_task incY () h\
events I ?
not power < task 1ncY ()
failures I
J '
I assert (X == Y)
| jnext task send()
\— [

12
. [.

Split-phase events provide timely reaction

Private
Variable

sensor ()
Schedules = senseX ()
sensor () = senseyY ()
X = senseX () (sensord
Y = senseY ()
AvgX = movingAvg (X E>
AvgY = movingAvg (Y sensor ()

AvgX = movingAvg (X')
AvgY = movingAvg (Y')

13

Split-phase serialization orders tasks & events

task i1ncrement () sensor ()
v X’ = senseX ()
X++ Y’ = senseY ()

N (sensor)

Y++
assert (X==Y)
next task send() sensor ()

Il>>A.ng = movingAvg (X’)
AvgY = movingAvg (¥')

task send () j __——

Coati serializes multiple interrupts in FIFO order

sensor ()

(sensor)

sensor ()

(sensor)

" >—

e CoOati Motivation

 Intermittent Programming Models & Interrupts
« Problem #1: Interrupt Interrupted
« Problem #2: False Flag

e Coati Overview
 Task & Event Interaction
e Multi-Task Transactions

« Correctness
« Programming Effort
e Runtime Overhead

Coati Evaluation

e Correctness

* Programming Effort
« Runtime Overhead

We evaluated Coati on real hardware

. S0 Bitcount BC
Coati g ~
Activity Recognition AR

Alpaca & RSA Encryption RSA

Cold-Chain CEM
Atomic @ Equipment Monitor
Cuckoo Filter CF

Hand- w
Optimized Blowfish Encryption BF

Caution: Coatis at Work

18

Coati ensures correct execution with interrupts

 Synchronization was carefully BC
added to the Alpaca code

* Both systems used the same task AR

\/ v

v X

decomposition RSA /7 X
* Data in Alpaca still become CEM

Inconsistent v X

cF Vv X

v X

BF

19

Coati transactions simplify concurrent code

2.8 o

—_
(@)

10
O 9 Coati Hand-Op O 14 :
S g < Coati ™ Hand-Op
Vg N 12
« 7/ L
L 6 O 10
W) n
.5 Z 8
O
—i 4 :g 6
£ 3 € 4
| - 2 ©
> = 2
0 0
BC AR RSA CEM CF BF BC AR RSA CEM CF BF
* Lines of synchronization code « On average, fewer, simpler

reduced by 67% on average transitions are required

20

Coati's overhead is similar to other strategies
without their drawbacks

200 Runtime on Harvested Energy

180
160

\\n.\

[Atomlc O Hand -Op - Coatl

140

120
100
80
60
40
20
0
BC AR RSA

Runtime (sec)

Coati provides simple, correct semantics for

For more:

* Read the paper NG -
* Experiment with our code : N
e Stick around! r :.-"-:-';.,f'ff.:“

~]

MSP-FET MCU 4 for relay” ¢ r'f; .

Saleae logiC s % ————'/
r _) .

—

github.com/CMUAbstract/coati_pldi19.git

22

Transactional Concurrency
Control for Intermittent,
Energy-Harvesting
Computing Systems

Emily Ruppel and Brandon Lucia
June 26, 2019
PLDI 2019 -- Systems II

Q

TS
Carnegie Mellon University % ,(() EEleNCt& clall\ﬁzE (I:Eo |fr{n| |<J| teGr

