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Atomic 
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Intermittent devices need concurrent interrupts

[Chain, 

OOPSLA 

2016]
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2017]
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• Event-atomic tasks

• Multi-task transactions

• Timely split-phase events

Intermittent devices need concurrent interrupts
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Prior work supports one execution context  
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W = Z

Y++

assert(X==Y)

next_task send()

Z = X

X++

next_task incY()

task incX()

task incY()

Z = X

X++

W = Z

Y++

assert(X==Y)

[Alpaca,

OOPSLA 2017]

task

X = 0

Y = 0 

event

Non-volatile

Write-after-read 

dependence

Idempotent 

re-execution



Interrupts violate correctness assumptions 
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W = Z

Y++

assert(X==Y)

next_task send()

Z = X

X++

next_task incY()

task incX()

task incY()

[Alpaca,

OOPSLA 2017]

Assumptions:

• Tasks always start 
from the same point

• Tasks re-execute 
idempotently

X = sense() 



Power failures can happen during interrupts
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X = 0

Y = 0

return

…

t1 = X + 1

…

t2 = Y + 1

assert(t1==t2)

next_task send()

task increment() event clear()

X Y

1 1

X Y

0 1

Problem #1: Interrupt Interrupted



…

T2 = Y + 1

assert(T1==T2)

flag = 0

next_task send()

Conventional synchronization fails
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if(flag)return

X = 0

Y = 0

return

…

flag = 1

T1 = X + 1

next_task incY()

task incX()

event clear()

task incY()

flag

0

flag

1

X Y

1 1

X Y

0 0

T1 T2

0 0

T1 T2

2 0

T1 T2

2 2

T1 T2

2 1

Problem #2: False Flag
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Coati produces correct code with interrupts 
for intermittent systems
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Coati serializes interrupts after scheduled tasks
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X = sense()

event_return()

transaction

Atomic w.r.t 

power failures
& eventsAtomic w.r.t 

events

not power 
failures

…

Y++

assert(X == Y)

next_task send()

…

X++

next_task incY()

task incY()

task incX()

event sensor()



Split-phase events provide timely reaction

13

X’ = senseX()

Y’ = senseY()

top_return(sensor)

top sensor()

AvgX = movingAvg(X’)

AvgY = movingAvg(Y’)

bottom sensor()

X = senseX()

Y = senseY()

AvgX = movingAvg(X)

AvgY = movingAvg(Y)

evt_return()

event sensor()

Schedules 

bottom half

Private 

Variable



Split-phase serialization orders tasks & events
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X’ = senseX()

Y’ = senseY()

evt_return(sensor)

…

X++

…

Y++

assert(X==Y)

next_task send()

task increment() top sensor()

AvgX = movingAvg(X’)

AvgY = movingAvg(Y’)

bottom sensor()

task send()



Coati serializes multiple interrupts in FIFO order
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…

evt_return(sensor)

… 

X++

next_task send()

task incX() top sensor()

…

bottom sensor()

…

Y++

assert(X==Y)

tx_next send()

task incY()

…

evt_return(sensor)

top sensor()

…

bottom sensor() task send()

…
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•Correctness

•Programming Effort

•Runtime Overhead

Coati Evaluation



We evaluated Coati on real hardware
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Systems

Coati

Alpaca

Atomic

Hand-

Optimized

Apps

Bitcount BC

Activity Recognition AR

RSA Encryption RSA

Cold-Chain 

Equipment Monitor
CEM

Cuckoo Filter CF

Blowfish Encryption BF



Coati ensures correct execution with interrupts

Coati Alpaca

BC

AR

RSA

CEM

CF

BF
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• Synchronization was carefully 
added to the Alpaca code

• Both systems used the same task 
decomposition

• Data in Alpaca still become 
inconsistent



Coati transactions simplify concurrent code
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Coati’s overhead is similar to other strategies
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Coati provides simple, correct semantics for 
concurrency control in an intermittent execution

For more:

• Read the paper

• Experiment with our code

• Stick around!
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github.com/CMUAbstract/coati_pldi19.git
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