
Transactional Concurrency
Control for Intermittent,

Energy-Harvesting
Computing Systems

Emily Ruppel and Brandon Lucia

June 26, 2019

PLDI 2019 -- Systems II

Intermittent
Energy-Harvesting
Computing
Systems

2

Time

E
n

e
rg

y

ML/AI beyond the edge

[Sonic & Tails, ASPLOS 2019]

Charging Powered on

Power down

[Capybara,

ASPLOS 2018]

3

Atomic

w.r.t power

failures

Intermittent devices need concurrent interrupts

[Chain,

OOPSLA

2016]

[Alpaca,

OOPSLA

2017]

4

• Event-atomic tasks

• Multi-task transactions

• Timely split-phase events

Intermittent devices need concurrent interrupts

• Intermittent Programming Models & Interrupts

• Problem #1: Interrupt Interrupted

• Problem #2: False Flag

Coati Motivation

• Coati Overview

• Task & Event Interaction

• Multi-Task Transactions

Coati System Design

• Correctness

• Programming Effort

• Runtime Overhead

Coati Evaluation

Prior work supports one execution context

6

W = Z

Y++

assert(X==Y)

next_task send()

Z = X

X++

next_task incY()

task incX()

task incY()

Z = X

X++

W = Z

Y++

assert(X==Y)

[Alpaca,

OOPSLA 2017]

task

X = 0

Y = 0

event

Non-volatile

Write-after-read

dependence

Idempotent

re-execution

Interrupts violate correctness assumptions

7

W = Z

Y++

assert(X==Y)

next_task send()

Z = X

X++

next_task incY()

task incX()

task incY()

[Alpaca,

OOPSLA 2017]

Assumptions:

• Tasks always start
from the same point

• Tasks re-execute
idempotently

X = sense()

Power failures can happen during interrupts

8

X = 0

Y = 0

return

…

t1 = X + 1

…

t2 = Y + 1

assert(t1==t2)

next_task send()

task increment() event clear()

X Y

1 1

X Y

0 1

Problem #1: Interrupt Interrupted

…

T2 = Y + 1

assert(T1==T2)

flag = 0

next_task send()

Conventional synchronization fails

9

if(flag)return

X = 0

Y = 0

return

…

flag = 1

T1 = X + 1

next_task incY()

task incX()

event clear()

task incY()

flag

0

flag

1

X Y

1 1

X Y

0 0

T1 T2

0 0

T1 T2

2 0

T1 T2

2 2

T1 T2

2 1

Problem #2: False Flag

• Intermittent Programming Models & Interrupts

• Problem #1: Interrupt Interrupted

• Problem #2: False Flag

Coati Motivation

• Coati Overview

• Task & Event Interaction

• Multi-Task Transactions

Coati System Design

• Correctness

• Programming Effort

• Runtime Overhead

Coati Evaluation

Coati produces correct code with interrupts
for intermittent systems

11

App

code

Programmer
Coati

Application

Deployed

App

Coati

Binary

Coati

Executable

Linker

App

Binary

Coati
Runtime

Intermittent

Device

Coati serializes interrupts after scheduled tasks

12

X = sense()

event_return()

transaction

Atomic w.r.t

power failures
& eventsAtomic w.r.t

events

not power
failures

…

Y++

assert(X == Y)

next_task send()

…

X++

next_task incY()

task incY()

task incX()

event sensor()

Split-phase events provide timely reaction

13

X’ = senseX()

Y’ = senseY()

top_return(sensor)

top sensor()

AvgX = movingAvg(X’)

AvgY = movingAvg(Y’)

bottom sensor()

X = senseX()

Y = senseY()

AvgX = movingAvg(X)

AvgY = movingAvg(Y)

evt_return()

event sensor()

Schedules

bottom half

Private

Variable

Split-phase serialization orders tasks & events

14

X’ = senseX()

Y’ = senseY()

evt_return(sensor)

…

X++

…

Y++

assert(X==Y)

next_task send()

task increment() top sensor()

AvgX = movingAvg(X’)

AvgY = movingAvg(Y’)

bottom sensor()

task send()

Coati serializes multiple interrupts in FIFO order

15

…

evt_return(sensor)

…

X++

next_task send()

task incX() top sensor()

…

bottom sensor()

…

Y++

assert(X==Y)

tx_next send()

task incY()

…

evt_return(sensor)

top sensor()

…

bottom sensor() task send()

…

• Intermittent Programming Models & Interrupts

• Problem #1: Interrupt Interrupted

• Problem #2: False Flag

Coati Motivation

• Coati Overview

• Task & Event Interaction

• Multi-Task Transactions

Coati System Design

• Correctness

• Programming Effort

• Runtime Overhead

Coati Evaluation

17

•Correctness

•Programming Effort

•Runtime Overhead

Coati Evaluation

We evaluated Coati on real hardware

18

Systems

Coati

Alpaca

Atomic

Hand-

Optimized

Apps

Bitcount BC

Activity Recognition AR

RSA Encryption RSA

Cold-Chain

Equipment Monitor
CEM

Cuckoo Filter CF

Blowfish Encryption BF

Coati ensures correct execution with interrupts

Coati Alpaca

BC

AR

RSA

CEM

CF

BF
19

• Synchronization was carefully
added to the Alpaca code

• Both systems used the same task
decomposition

• Data in Alpaca still become
inconsistent

Coati transactions simplify concurrent code

20

0

1

2

3

4

5

6

7

8

9

10

BC AR RSA CEM CF BF

N
o

rm
,
L
.o

.C
fo

r
S
y
n

c Coati Hand-Op

• Lines of synchronization code

reduced by 67% on average

0

2

4

6

8

10

12

14

16

BC AR RSA CEM CF BF

T
ra

n
si

ti
o

n
s

fo
r

S
y
n

c

Coati Hand-Op

• On average, fewer, simpler

transitions are required

Coati’s overhead is similar to other strategies

21

0

20

40

60

80

100

120

140

160

180

200

BC AR RSA CEM CF BF

R
u

n
ti

m
e
 (

se
c)

Runtime on Harvested Energy

Atomic Hand-Op Coati

without their drawbacks

Coati provides simple, correct semantics for
concurrency control in an intermittent execution

For more:

• Read the paper

• Experiment with our code

• Stick around!

22

github.com/CMUAbstract/coati_pldi19.git

Transactional Concurrency
Control for Intermittent,

Energy-Harvesting
Computing Systems

Emily Ruppel and Brandon Lucia

June 26, 2019

PLDI 2019 -- Systems II

