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Abstract
Energy harvesting computers enable general-purpose com-
puting using energy collected from their environment. En-
ergy-autonomy of such devices has great potential, but their
intermittent power supply poses a challenge. Intermittent
program execution compromises progress and leaves state
inconsistent. This work describes Chain: a new model for
programming intermittent devices.

A Chain program is a set of programmer-defined tasks
that compute and exchange data through channels. Chain
guarantees forward progress at task granularity. A task is
restartable and never sees inconsistent state, because its input
and output channels are separated. Our system supports
language features for expressing advanced data exchange
patterns and for encapsulating reusable functionality.

Chain fundamentally differs from state-of-the-art check-
pointing approaches and does not incur the associated over-
head. We implement Chain as C language extensions and a
runtime library. We used Chain to implement four applica-
tions: machine learning, encryption, compression, and sens-
ing. In experiments, Chain ensured consistency where prior
approaches failed and improved throughput by 2-7x over the
leading state-of-the-art system.

Categories and Subject Descriptors D.4.5 [Reliability]:
Checkpoint/restart; C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems

Keywords intermittent computing, energy-harvesting

1. Introduction
Simultaneous innovations in wireless and ambient power tech-
nology, coupled with a dramatic decrease in power demands
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Figure 1: A Chain program. The program has three tasks that execute in
sequence and pass data to one another via channels.

of general-purpose microcontrollers (MCUs), has produced a
new breed of energy-harvesting computing devices (EHDs).
An EHD is a type of computing hardware that powers itself
exclusively with energy it collects from its environment, such
as ambient [22] or directed [34] radio frequency energy (RF).
Energy-autonomy makes EHDs an essential technology for
next-generation medical [21, 30], extraterrestrial [40], and
IoT [38] applications.

A typical EHD buffers the energy it collects in a small
energy storage capacitor. Once the capacitor has accu-
mulated sufficient energy, the EHD begins operating and
quickly drains the capacitor. When the capacitor is ex-
hausted, the EHD abruptly shuts down. Operation resumes
when the capacitor recharges and the device reboots. The
charge/discharge cycle is characteristic of energy-harvesting
devices [21, 28, 34]. Consequently, EHDs execute software
according to the intermittent execution model [8, 23, 31]: a
program that runs longer than a single charge cycle includes
periods of execution perforated by reboots. An intermittent
execution includes the power failures, in contrast to continu-
ously powered execution that ends at a power failure.

Intermittence is problematic because it can cause a pro-
gram that is correct in a continuous execution to exhibit
unpredictable behavior. When a device experiences a power
failure, its volatile state (program counter, registers, SRAM)
clears, while its non-volatile state (FRAM, flash) persists. As
a result, intermittence can impede forward progress [5, 32]
and cause data corruption or crashes [8, 23, 31]. Prior work
attempted to address these issues, primarily by checkpoint-
ing [23, 32]. Unfortunately, checkpointing is not a viable
solution. Checkpointing does not scale to large memory sizes
because its time and energy overhead is proportional to the
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amount of program state. Checkpointing overheads deprive
the application of the EHD’s scarce storage and energy. Fur-
thermore, checkpointing is impossible when its energy cost
plus the energy cost of application code between checkpoints
exceeds the device’s energy storage capacitor.

The goal of this work is to make software that runs in-
termittently reliable without resorting to checkpoints. A pro-
gramming model that guarantees that an application will
execute correctly even when it executes intermittently is
intermittence-safe. We propose the Chain programming and
execution model. Chain is a new programming interface for
intermittent EHDs. In a Chain program, the programmer de-
composes the computation into a sequence of tasks, each
of which can perform arbitrary computation and I/O. Chain
guarantees that execution progress is preserved at the granu-
larity of tasks. Chain ensures tasks have atomic all-or-nothing
semantics and that state in volatile and non-volatile memory
visible to a task is always consistent. Together these proper-
ties make Chain intermittence-safe.

To ensure atomicity and consistency, Chain uses a novel
memory access model for an EHD’s volatile and non-volatile
memory. A task has full access to volatile memory, but Chain
requires all volatile variables to be task-local. To convey in-
puts to and outputs from tasks, the programmer uses Chain’s
channel-based non-volatile memory access model. A task can
send a named value to another task (or to a future instance
of itself) via a channel dedicated to a pair of tasks (or its
own ‘self’ channel). Chain’s channel mechanism guarantees
that a task’s inputs and outputs are stored in distinct memory
locations. The separation of inputs and outputs ensures that a
task with any mixture of accesses to volatile and non-volatile
memory is arbitrarily restartable after a power failure with es-
sentially no restoration cost. From the perspective of the task,
its inputs are always immutable, consistent, and available in
the channel. Figure 1 shows a schematic representation of a
Chain program with three tasks that are sequenced by a task
graph and that exchange data via channels.

The Chain execution model implements the semantics of
the Chain programming model. To preserve progress, Chain
runtime tracks the currently executing task and restarts it
on power failure. For atomicity and consistency, in a Chain
execution all access to non-volatile memory by the applica-
tion takes place via a channel I/O operation. Sophisticated
data exchange patterns between tasks are expressed through
the synchronized channel read and multicast channel write
operations. A synchronized channel read returns the most
up-to-date version of a named value among a collection of
channels that may contain an input value. A multicast channel
write allows one task to send a value to many other tasks,
without the need for duplicate backing channel storage. The
Chain execution model supports abstraction and encapsula-
tion of reusable functionality into modular task groups.

We implemented the Chain language as an extension to C
and a runtime library. We evaluated Chain by using it to write

two real-world sensing applications and two software compo-
nents, including machine-learning-based activity recognition,
temperature sensing and compression, cuckoo filtering, and
1024-bit RSA encryption, the first of which we know to run
on an EHD. We show with experimental comparisons to prior
work that Chain more effectively preserves progress, keeps
data consistent, and significantly improves on run time perfor-
mance of checkpointing systems with similar goals, namely
DINO [23] by 2-7x and Mementos [32] by 10-150x.

To summarize, our main contributions are:

• We propose Chain, an intermittence-safe task-based pro-
gramming model and channel-based memory model.

• We present an implementation of Chain as an extension
to C and a runtime library.

• We use Chain to build applications that perform RSA
encryption, LZW compression, activity recognition, and
cuckoo filtering on an EHD.

• We show that Chain provides intermittence-safety with
2-150x higher throughput than checkpointing approaches.

2. Background and Motivation
This section provides background on EHDs, the intermittent
execution model, and the state-of-the-art in tolerating inter-
mittence. This section also presents high-level simulation
results that motivate Chain in the context of prior approaches.

2.1 Energy-Harvesting and Intermittent Execution
EHDs extract energy from their environment and operate ac-
cording to the intermittent execution model [23]. In contrast
to continuous execution, intermittent execution includes peri-
ods of computation interspersed with power failures. The fail-
ures inherent to an intermittent execution threaten its progress
and data consistency. An intermittent execution may fail to
make progress, because after a failure control flows back
to the application’s entry point (i.e., the start of main). In-
termittence may leave data inconsistent, because in a typi-
cal EHD a power failure erases volatile memory but leaves
non-volatile memory untouched. The re-initialized volatile

NV b_in = <input>;
NV b_out = 1; e=0
main(exp E, mod n){
 while(e++ < E){
   b_out *= b_in
 }
 b_out %= n 
 return b_out
}

while(e++ < E)

Ti
m

e

b_out *= b_in

e = 0

REBOOT
b_out = b_in

while(e++ < E)

b_out *= b_in

e = 0
b_out = b_in^2

ERROR
b_out = b_in^2 after only 1 multiplication!

Intermittent ExecutionSource Code

Figure 2: Intermittent execution causes errors. The program computes RSA
cyphertext b_out from plaintext b_in with public key (E,n), all stored in
non-volatile memory. The loop index e is in volatile memory. Intermittent
execution produces the wrong result with or without a checkpoint of volatile
state, because in either case only e but not b_out is re-initialized on reboot.
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memory values may be inconsistent with values persisted in
non-volatile memory. A reboot may cause a read-modify-up-
date of non-volatile memory to repeat and produce a memory
state impossible in a continuous execution.

Figure 2 shows simplified code for RSA encryption [33]
that is correct when executed with continuous power, but that
produces incorrect results on intermittent power. The code
encrypts plaintext from b_in into cyphertext in b_out, both
of which are in non-volatile memory. The exponent E and
the modulus n are inputs to the algorithm, stored in volatile
memory, as is e, the loop index. The intermittent execution
on the right is interrupted when e is zero and b_out has
been multiplied once. On reboot control flow returns to the
top of main. Index e is again zero but b_out is erroneously
multiplied a second time. The cyphertext in b_out has been
irreversibly corrupted as a result of intermittence.

2.2 The High Cost of Checkpointing
Starting with Mementos [32], prior work has resorted to
checkpointing [2, 18, 23, 31] to preserve progress and keep
data consistent in an intermittent execution. A checkpointing-
based approach periodically captures a consistent system state
and after a reboot resumes the execution by restoring the state
captured in the checkpoint. Note that the intermittence bug
in Figure 2 can still manifest with a checkpoint at the end of
the loop body, when the checkpoint records only the volatile
state [2, 18, 32]. The result of the program will be wrong
whenever a reboot happens between the update of b_out in
non-volatile memory and the checkpoint.

Prior work [23] noted the importance of checkpointing
volatile and non-volatile state. A volatile-only checkpointing
system challenges the user with a lose-lose proposition:
either store all application state in scarce volatile memory or
risk state corruption. Consequently, in either checkpointing
system, the checkpoint size may be as large as the total
amount of state in the program (i.e., not just the volatile
execution context). The size of the checkpoints determines
the program’s energy and time overhead.

To study the overhead of checkpointing, we built a sim-
ulator that models intermittent execution in a system with
checkpointing (CP) and with no checkpointing (NCP). The
workload consists of a fixed number of read-modify-update
(RMU) operations to distinct memory locations. For each
trial, we break up the workload into tasks such that the size
of each task is randomly distributed within +/-10% of the
value chosen for that trial. Our device model emulates energy
storage, depletion, and full recharge. If energy runs out in
the middle of a task, the energy level is replenished, and the
task re-executes from the beginning. A CP system saves a
checkpoint of the volatile memory into non-volatile memory
at each task boundary. Any NCP system must also use non-
volatile memory to persist state. We model the worst-case
for an NCP, by making each RMU in the NCP workload an
access to non-volatile memory. We model the relative cost of
volatile and non-volatile memory accesses based on our own
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Figure 3: Checkpointing wastes energy. With checkpoints more work is
wasted, because a task is less likely to finish restoring, executing, and saving
state before energy runs out (left, center). To have any chance of completing
at all, tasks must be smaller than they could be without checkpoints (right).

measurements of access costs for SRAM and FRAM in a TI
MSP430FR5969 MCU on the WISP [34].

Figure 3 shows the ratio of useful to wasted energy for
the checkpointing and no checkpointing models. Any energy
spent on the task is wasted if the task experienced a power
failure before it was able to complete (including checkpoint
operations in CP). Our simulation shows that across all task
sizes, a CP system wastes more work per successful task than
an NCP system. The disparity arises because checkpointing
overhead increases the likelihood that a task will exhaust
energy before completing and waste all the energy that
was spent on it. The second observation is that checkpoints
prevent progress when the task length grows to around 2200
RMUs. At that point the checkpoint overhead plus the task
cost exceeds the energy storage capacity. By eliminating
checkpoint overhead, an NCP system allows for a much
larger maximum task size, which grants more flexibility in
task definition. The simulation illustrates the deficiencies of
checkpointing: added overhead, wasted work, and limited
task length. The next section describes Chain, a realization of
an NCP system that ensures progress and consistency without
these checkpointing costs.

3. Chain Programming Model
The Chain programming model uses task-based control-
flow and a channel-based memory model to ensure progress
and consistency for intermittent executions without any of
the overheads of checkpointing. Task-based control-flow
provides a strong notion of progress in the presence of power
failures. Channel-based memory allows tasks to exchange
data values with guaranteed consistency. Table 1 summarizes
the Chain language, and Figure 4 shows an example Chain
program that we use to illustrate Chain’s features.
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Table 1: The Chain Language.

Feature Function

Ta
sk

s

task T, f Create a task T implemented by function f
origin T Specify task T to run on first power up
self Refer to the current task
NextTask T Transfer control to task T

C
ha

nn
el

s

channel (T1,T2), Define channel from task T1 to task T2 with
{F : type, . . .} a set of fields and specify a type for each field F

ChIn F,T Read field F from channel (T , self)
ChOut {F ← v},T Write value v into field F in channel (self, T )
ChSync F , {T1, . . . ,Tn} Read the most recent value of field F

in channels (T1, self), . . . , (Tn, self)
MultiOut {F ← v}, Write v into field F in channels

{T1, . . . ,Tn} (self, T1), . . . , (self, Tn)

M
od

ul
es

module M,Tin,Tout, Create module M with entry task Tin, exit task Tout
{T1, . . . ,Tn} and member tasks T1, . . . , Tn

ModEnter M, T Transfer control to the entry task in module M
and make task T the successor of module M

ModLeave Transfer control to successor of current module
ModPut {F ← v},M Write value v to field F in the input channel of M
ModGet F,M Read field F from the output channel of M
ModIn F Read field F from current module’s input channel
ModOut {F ← v} Write v to F in current module’s output channel

3.1 Task-Based Control-Flow
A Chain program is written as a collection of tasks. The task
keyword labels a C function as a Chain task. A task can
perform arbitrary computation and is free to define task-local
volatile variables (e.g. s in task Sense in Figure 4) and access
peripherals (e.g. call to sensor()). The set of tasks in an
application form a task graph that determines how control
flows into and out of each task. Each task has at least one
predecessor task and at least one successor task. One task
in the graph is marked as the origin task and is the task that
executes when the device powers up for the first time.

Each task has a single entry point and one or more exit
points. The entry point is at the top of the task function.
The programmer syntactically represents an exit point with
a NextTask statement. Each NextTask statement takes the
name of another task as an argument and when the statement
executes, control is transferred to the entry point of that task.
The programmer can include a NextTask statement along
any control-flow path in a task, terminating that path. The
program in Figure 4 has three tasks that are linked into a task
graph using NextTask statements.

Chain provides the language-level guarantee to program-
mers that tasks are progress-preserving. Progress preservation
means that control flows from one task to another at a task’s
endpoint only. Control never jumps discontinuously back to
an earlier task and never flows non-deterministically, even in
the presence of arbitrarily timed power failures. For example,
after a reboot anywhere in the code in Figure 4, the appli-
cation resumes from one of precisely three locations in the
application: the first instruction in Sense, Alert, or CmpAvg.
In addition, once execution advances into CmpAvg, it cannot
enter Sense before going through Alert; execution follows
the task graph. This intuitive control flow behavior cannot
be relied on in a system that is not progress-preserving but
can experience power failures. In Chain forward progress is
guaranteed as long as the energy demand of each individual

origin task Sense(){

  int s=sensor()  
  ChOut {S <- s}, CmpAvg
  NextTask CmpAvg

}

task CmpAvg(){
  int s = ChIn S, Sense
  int head = ChIn HEAD, self
  
  int sum=0, avg=0;
  for(int i=0; i < 5; i++){
    sum += ChIn a[i], self
  }
  avg = sum / 5

  ChOut {a[head] <- s}, self
  head = (head+1)%5
  ChOut {HEAD <- head}, self

  if( s > avg*2 ){
    ChOut {S <- s}, Alert
    NextTask Alert
  }
  
  NextTask Sense
}

task Alert(){
  int s = ChIn S, CmpAvg
  int cnt = ChIn Cnt, self
 
  /*external func to report
    anomaly val & count*/
  report(s, cnt);

  ChOut {Cnt <- cnt+1}, self 
  NextTask Sense
}

Figure 4: An example Chain program. The program has three tasks, Sense,
CmpAvg, and Alert. Sense is the origin task. It reads a sensor and sends
the result to CmpAvg. CmpAvg compares the current sample from Sense to
twice the average of 5 past samples. If the current sample is greater, CmpAvg
sends the anomaly to Alert. Alert counts and outputs anomalies. The code
assumes channel fields are statically initialized to zero. All non-channel state
(i.e., int s) in Chain is task-local.

task never exceeds the total energy storage capacity of the
device. The programmer can control the energy demands of
tasks by choosing the total number of tasks in the application
and the amount of work in each task.

3.2 Channel-Based Memory Model
A Chain task has unrestricted access to volatile, task-local
variables but is not allowed to directly access the system’s
non-volatile memory. Instead, Chain exposes non-volatile
memory to programmers through channels. A channel is a
named region of non-volatile memory controlled by Chain.
Each channel holds a collection of individually-accessible
named, typed fields. A channel may be declared from any task
to any other task using the channel statement. A channel is
identified by a tuple of its endpoints: the source task and the
destination task. The source task can write a named value into
the channel and the destination task can read that named value
from the channel. We refer to the channel as a self-channel
when the source and destination are the same task.

Channels are the sole mechanism to move data into and
out of tasks. The programmer passes data through a channel
using the ChIn and ChOut operations. ChOut takes a named
value and the name of a channel and writes the value into
the matching field in the channel. ChIn takes the name of
a channel and a field name and returns the value that was
most recently written to that field in the channel by another
task’s ChOut. For example, with channel (T1,T2) declared,
task T1 can ChOut its output values for T2 to use as inputs
via ChIn. A self-channel (T,T ) allows an instance of task
T to send values to future instances of itself. Note that the
programmer need only explicitly specify the destination task
of a ChOut statement and the source task of a ChIn: the other
task in the channel’s name is the task containing the ChIn or
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ChOut. To refer to a self channel, the programmer can use the
self keyword in place of a task name. Figure 4 shows how
three tasks exchange data using ChIn and ChOut statements.
CmpAvg and Alert both use self channels to maintain data
across instances.

3.3 Multi-endpoint Channel Communication
While communication between tasks in a simple program
may be expressed with basic channel operators presented in
the preceding section, communication patterns in complex
programs require generalized operators. Chain defines mul-
ticast channel write for channeling data to more than one
destination and synchronized channel read for channeling
data from more than one source. Figure 5(a) and (b) illustrate
multicast write and synchronized read schematically.

multicast

T1 T2

(a) Multicast write

T1 T2

(b) Synchronized read

?

Module

T1
start

T2
start

T1
end

T2
end

(c) Modular Task Group

sync

Figure 5: Schematic view of advanced Chain features. Dashed lines are
channels and solid lines are task graph edges. (a) A one-to-many multicast
channel write to T1 and T2. Multicast enables use of a single, shared channel
buffer. (b) A many-to-one synchronized channel read from T1 and T2. Sync
enables consuming values conditionally produced in one of many tasks. (c)
A modular task group enabling reuse of an encapsulated task sub-graph. T1
and T2 can enter/exit and channel data into/out of the module, which need
not refer explicitly to T1 or T2.

3.3.1 One-to-Many Writes with Multicast Channels
Chain allows one task to produce the same value for many
other tasks at the same time, using a multicast channel write,
which is written “MultiOut” in Chain syntax. The semantics
of MultiOut is identical to the semantics of a consecutive
sequence of normal ChOut operations. Conversely, a ChOut
is a special case of the generalized MultiOut. Including both
MultiOut and ChOut in the language benefits implementa-
tions for two reasons. By retaining ChOut in the language,
MultiOut becomes an optional feature that can be omitted by
a compliant but minimal implementation of the core language.
An implementation that supports MultiOut can leverage it
to reduce the channel memory footprint. As we discuss in
detail in Section 4, MultiOut allows the Chain implementa-
tion to use a single channel buffer for the multicasted values,
rather than using multiple channel buffers, one per sequential
ChOut.

3.3.2 Many-to-One Reads with Channel Sync
Chain allows one task to consume a value that may come
from any one of a set of tasks using a synchronized channel

task Init(){ 
  ChOut {X <- 0}, T3
  NextTask T1
}

task T1(){ 
  if( condA() )
    ChOut {X <- 1}, T3
  NextTask T2
}

task T2(){ 
  if( condB() )
    ChOut {X <- 2}, T3
  NextTask T3
}

task T3_no_Sync(){

  int i;   
  if( condA() ){ 
    i = ChIn X, T1 }
  else if(condB()){ 
    i = ChIn X, T2 }
  else{ i = ChIn X, Init }
  print i;
  exit;

}

task T3(){ 
  int i;  
  i = ChSync X, Init, T1, T2  
  print i;
 
}

ChSync yields the value of X written
most recently by any of the listed tasks

To consume X without ChSync,
T3 must re-evaluate these 
conditions from T1 and T2.

(a) A synchronized channel read always produces the version of a
named value most recently written by a task.

(b) To find a value without ChSync, T3 must re-evaluate conditions 
from T1 and T2 which may be impossible after T1 and T2 complete.

Figure 6: ChSync simplifies channel logic. Any of the tasks, Init, T1, and
T2, may provide a value to T3. T3 is trying to read the freshest value of
X. We show two versions of T3, one with and one without ChSync. The
version without ChSync must re-evaluate the conditions from T1 and T2 (in
either order, assuming the conditions are exclusive), to decide which of the
three task to get the value from. Such logic may require additional values
referenced in the conditions to be channeled from T1 and T2 to T3. ChSync
is a concise, robust, and efficient solution to this problem.

read, which is written “ChSync” in Chain syntax. A ChSync
takes the name of the value to read and a list of channel
names, rather than a single channel name like ChIn. ChSync
returns the named value from the channel that most recently
had a value with that name written into it.

ChSync is an essential Chain language feature, because a
value-consuming task may sometimes need a named value
produced by one task and other times need the same named
value produced by another task. Similarly, a value-producing
task may produce a named value only if some condition is
met. Figure 6 shows an instance of this situation. Tasks Init,
T1 and T2 each potentially produce a different value for field
X. The task consuming that named value, T3 in this example,
has no way of knowing which of the tasks, T1 or T2, actu-
ally produced a value for X in a particular execution of the
program, unless the programmer adds dedicated logic that
would generate that information. The extra logic would need
to either replicate the code evaluating the condition in the
value consuming task (T3), as sketched in Figure 6b, or un-
conditionally channel the result of the condition evaluation to
that task (from T1 and T2). With ChSync such unsustainable
logic duplication is avoided.

ChSync eliminates the need for a value-consuming task to
reason about which of a set of possible value producers pro-
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Modular: Pow() code in reusable modular task

task MultCypherIn(){
  ChIn cypher, …; ChIn base, …;
  ChIn n, …
  ModPut {A <- cypher}, MultMod
  ModPut {B <- base}, MultMod
  ModPut {N <- n}, MultMod
  ModEnter MultMod, MultCypherOut
}

task MultCypherOut(){
  cypher = ModGet Res, MultMod
  ChOut cypher, ...
  NextTask ...
}

task SquareBaseIn(){
  ChIn base, …
  ChIn n, …
  ModPut {B <- base}, MultMod
  ModPut {B <- base}, MultMod
  ModPut {N <- n}, MultMod
  ModEnter MultMod
}

task SquareBaseOut(){
  base = ModGet Res, MultMod
  ChOut base, ...
  NextTask ...
}

modular task Mult(){ /*entry*/
  a = ModIn A
  b = ModIn B
  res = a * b
  ChOut {Res <- res}, Modulo
  NextTask Modulo }

modular task Modulo(){
  r = ChIn Res, Mult
  n = ModIn N
  res = r % n
  ModOut {Res <- res}
  ModLeave

task NonModular_ModMult(){
 
  b = ChSync B, T1, T2,...
  e = ChSync E, T1, T2,...
  n = ChSync N, T1, T2,...

  p = b * e; res = p % n

  ChOut {Res <- res}, WHERE?

  
  NextTask WHERE?  
}

module MultMod
ModEnter

ModLeave

ModEnter

ModLeave

ModIn abstracts
predecessors’ channels

ModOut/Leave abstract
successor task/channel

Must know all possible predecessors
across which to ChSync

No way to know the successor
task(s) or channels(s)

(a) A modular task group enables modular re-use of the MultMod task subgraph. (b) Without modules, re-use is impossible

Figure 7: Modular task groups encapsulate code. The RSA implementation contains a reusable task graph that computes a product modulo a number. With
modules, reused tasks need not explicitly name all predecessors (to get the inputs from) and all successors (to pass the outputs and transfer control to).
NonModular_ModMult shows why it is impossible to properly encapsulate without Chain’s modules.

duced the value it needs. Instead, ChSync lets the consuming
task observe the value most recently produced by any of the
potential value-producing tasks. Yielding the most recently
produced value at a ChSync is reasonable because there is a
global, total order on tasks: yielding any other value would
be contradictory to the sequential task order and would be
equivalent to reordering executed tasks. Section 4 describes
how the Chain runtime ensures that a ChSync always sees
the latest value.

3.4 Encapsulation of Reusable Functionality
Chain supports encapsulation of reusable functionality with
modular task groups, or “modules”. Figure 5(c) schematically
illustrates Chain’s module support. Like callable functions,
modules allow the same code to be executed at many points in
a Chain program without requiring the code inside the module
to include any information about what those arbitrary points
of use are. Without modules, code cannot be parametrized for
reuse, because the code would need to include information
about each point in the program at which its parameters would
be instantiated with values. Specifically, without module
support, the channel operations in the code must explicitly
refer by name to each task that could produce parameter
values for the code and to each task that could consume the
result computed by the code. The module interface abstracts
tasks that produce parameters and consume results, making
it possible to write reusable code that does not contain any
information about the sites where it is used.

A set of tasks may be grouped into a module using the
module keyword. One task is designated as the entry task
and one as the exit task. The encapsulated functionality is
the behavior of any execution from the entry task to the exit
task. We refer to any task that transfers control to a module
as one of the predecessors of that module and any task that
receives control from a module as one of the successors of
that module. To transition to a module, a predecessor task
uses a ModEnter statement. A ModEnter takes the name of a
module and the name of a successor task and transfers control
to the module’s entry task. A module’s member tasks then

execute until the module’s exit task executes a ModLeave
statement. The ModLeave statement transfers control to the
successor task specified to ModEnter.

A module takes its input from its own input channel and
produces output into its own output channel. Both channels
are allocated as a result of the module’s declaration and
dedicated to that module. A modules’s member tasks can
read values from the input channel using ModIn and the exit
task can write values into the output channel using ModOut.
Only the exit task is allowed to write into the module’s
output channel, because it is never safe for more than one
task to write into the same channel (cf. Section 3.5). For the
same reason, only a predecessor task can put values into the
module’s input channel. A predecessor task channels values
into the module using the ModPut statement. ModPut takes
the name of a module and a named value, and associates
the value with that name in the module’s input channel. A
module’s successor can read a value from the module’s output
channel using a ModGet statement. A ModGet statement takes
a module’s name and a field name and returns the value from
the module’s output channel. To eliminate a potential source
of bugs, only a successor task is allowed to access a module’s
output channel.

Figure 7 illustrates modules in a simplified snippet from
our implementation of RSA. The figure shows a partial RSA
task graph (left) that in two places computes a product modulo
a number. The tasks inside the bold box, Mult and Modulo,
compose a module called MultMod. Mult is the module’s
entry task. The MultCypherIn task ModPuts the two factors
and the modulus into the MultMod module and enters the
Mult task. Mult uses ModIn to receive the inputs. ModIn is
key to modularity, because it eliminates the need for Mult
to ChSync across all possible predecessor tasks to find its
inputs. Such a ChSync would break encapsulation by requir-
ing all predecessors of the module to be explicitly enumer-
ated. Mult ChOuts the multiplication result to Modulo, an-
other member of the module, which computes the remainder.
Modulo uses ModOut and ModLeave to yield output and tran-
sition to the module’s current successor, which may be either
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MultCypherOut or SqBaseOut. ModOut and ModLeave are
also essential to reusability, because they abstract the suc-
cessor. These operations send output and transition to the
successor registered in the module by ModEnter. Without
modularity support, Modulo would be forced to break en-
capsulation by enumerating all successors and conditionally
choosing among them based on a control value channeled
into the task by its predecessor. Figure 7(b) shows an unsuc-
cessful attempt to reuse code for the same calculation through
complex control logic instead of Chain’s modularity support.

We also note that Chain allows reusing code by encapsu-
lating it into a conventional function and calling that function
from within a task. However, this method severely limits the
maximum size of a reusable component (i.e., the function).
Computation that requires more energy than can be stored
in the capacitor on the device cannot be encapsulated into a
function, because any task that would call that function would
always run out of energy before completing. This limit does
not apply to a Chain module, because computation encapsu-
lated into a module is decomposable into as many member
tasks as necessary.

3.5 Correctness
Chain is correct because its execution model ensures progress
and its memory access model ensures that every task is
atomic and idempotent. Together these properties imply a
task can arbitrarily lose power and reboot without compro-
mising progress or consistency. Chain’s progress guarantee
follows trivially from the task-based execution model defini-
tion, assuming no task’s energy demand exceeds the maxi-
mum energy storage of the capacitor on the device. Chain’s
consistency guarantee follows from the way Chain constrains
accesses to non-volatile and volatile state.

3.5.1 Task Atomicity and Isolation
Channel Exclusion for Non-volatile Memory Consistency.
Chain channels are strictly, statically subject to access con-
trol. A task may not write into any channel for which it is
not the source and a task may not read from any channel for
which it is not the destination. The key property that Chain
guarantees about channels is input/output channel exclusion:
by construction, a single task cannot both read and write the
same non-volatile memory location. Channel exclusion oc-
curs trivially for non-self channels. Chain statically requires
that when a task executes a ChIn on a channel, the executing
task must be the channel’s destination. Likewise Chain stati-
cally requires that a task executing a ChOut on a channel be
the channel’s source. For self channels, channel exclusion is
enforced by the Chain runtime (Section 4).

Channel exclusion guarantees that a task’s accesses to non-
volatile memory are idempotent. The task’s input values are
always available in channels for which it is the destination and
the task cannot alter those inputs. The task’s output values are
always written into channels for which that task is the source
and it cannot read those outputs. The inability for a task to

read a non-volatile value after a failure that it wrote before a
failure precludes visibility of partial or repeated non-volatile
data structure updates.

Task-locality for Volatile Memory Consistency. Chain’s
volatile memory model requires that all volatile variables are
task-local. This ensures that a volatile variable is initialized
in the task before it is used. Task-locality ensures that a task
can arbitrarily reboot from its entry point without losing any
volatile state: any path through the task must include a re-
initialization assignment. Task-locality of the Chain volatile
memory access model ensures that a task’s accesses to the
volatile memory are idempotent.

I/O in Chain Tasks A Chain task can interact with the
world by using I/O operations to manipulate sensors and ac-
tuators. The Chain tasks with I/O behave differently from
normal Chain tasks. An I/O operation in a Chain task may
execute repeatedly as a task re-executes due to intermittence.
Repeated executions of an I/O operation may produce dif-
ferent behavior if the repeated operation is non-idempotent.
Without careful programming, repeated, non-idempotent in-
put operations can violate task atomicity and repeated, non-
idempotent output operations may repeat external behavior
that should not repeat.

A non-idempotent input operation violates a task’s idem-
potence, because the input operation may produce a differ-
ent value each time the task re-executes. Exposing the input
operation’s non-idempotence to the program is desirable, be-
cause the re-execution of an input operation (e.g.,sensor read)
should always produce the latest available values. A task con-
taining a non-idempotent input operation is safe only if the
task does not write to a channel conditionally, based on the
value produced by the input operation.

In the absence of an input-conditional write to a channel,
every re-execution of the task performs writes to the same
fields of the same channels. Note that these operations may
write different values into these fields, depending on the result
of the input operation. After the task completes, channels
contain the consistent result of its last successful execution.

In contrast, a task that conditionally writes to a channel,
depending on the value produced by an input operation
may leave channel data inconsistent. The programmer must
leverage Chain channels to eliminate this possibility. When
control flow involves conditional channel output operations
and a task is interrupted, it may leave its output channels in
an inconsistent state that may be observed by a successor
task. A program that may exhibit this behavior is illustrated
on the left in Figure 8. Consider the execution where task
T1 reads a positive value from the sensor and is interrupted
after writing S but before writing SS. Then, T1 executes from
the beginning, reads a negative value from the sensor, and
transitions to T2. Task T2 will observe the value of S written
by T1, but the value of SS written by T0, which may be
mutually inconsistent.
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task T1()
  int s = sensor();
  if (s > 0)
    ChOut { S <- s}, T2
    ChOut { SS <- 2*s}, T2
  NextTask T2

task T1()
  s = ChIn Sin, T_sense
  if (s > 0)
    ChOut { S <- s}, T2
    ChOut { SS <- 2*s}, T2
  NextTask T2

task T0()
  MultiOut { S <- 2}, {T1, T2}
  MultiOut { SS <- 4}, {T1, T2}

task T2()
  s = ChSync S, {T0, T1}
  ss = ChSync SS, {T0, T1}
  assert( ss == 2 * s )

task T1_sense()
  int s = sensor();
  ChOut { Sin <- s }, T1

NextTask T1 NextTask T1_sense

split

Figure 8: I/O in Chain Tasks. On the left, in task T1, an input operation
(sensor()) is followed by a conditional output into a channel to T2. Because
the input operation is non-idempotent, the condition may evaluate differently
when T1 is interrupted and re-executed and T2 may observe S written by
T1 and SS written by T0, which violates atomicity of T1. On the right, the
program is re-written according to a programming pattern to perform I/O
safely: T1 is split such that the input operation is confined to a dedicated task
(T1_sense).

The problem arises because control-flow is affected by an
input into the task that does not come from a channel and,
therefore, is not covered by Chain’s atomicity and idempo-
tence guarantees. This observation suggests a straightforward
programming pattern, which prevents I/O non-idempotence
from affecting control-flow. The pattern for safe I/O is to
confine the input operation to a dedicated task that acquires
and channels the value to its successor(s). All downstream
tasks have to obtain the sensor value from a channel, which
ensures their idempotence. Applying the pattern to the above
example, we obtain an equivalent program, shown on the
right in Figure 8, which uses sensor input safely.

Once an output operation has activated an actuator, its
physical effect cannot be undone. Chain does not attempt to
provide at-most-once semantics for output operations. We
assume that in an application destined for an environment
where power is intermittent, the interfaces to actuators, the
actuators themselves, or the physical world can tolerate
incomplete and repeated output operations from the software.

Chain Tasks are Idempotent and Atomic. Channel exclu-
sion ensures that a task’s non-volatile memory accesses are
idempotent. Making all volatile variables task-local ensures
that a task’s volatile accesses are idempotent. Together, these
facts guarantee that a task’s computation and memory op-
erations are completely idempotent. Idempotent tasks can
fail repeatedly and be arbitrarily re-executed from their start
without any risk of inconsistency. Furthermore, Chain guar-
antees forward progress at the granularity of tasks, as long as
each task can complete on one capacitor charge. The progress
guarantee, combined with the idempotence guarantee implies
that Chain tasks are also atomic, exhibiting all-or-nothing
behavior with respect to observable memory state. We em-

phasize that Chain imparts idempotence and atomicity guar-
antees to the application by construction at language level.
Section 4 describes how our Chain implementation provides
these strong guarantees without the need for costly check-
point/restart mechanisms.

3.5.2 Generality of the Channel-Based Memory Model
For any program written in a sequential language with a con-
ventional memory model, e.g. C, there is a program written
using Chain task and channel abstraction that has equivalent
behavior. 1 We define program behavior as a sequence of
observed variable values, similar in spirit to the model in
[24]. To simplify the discussion, we only discuss operations
that manipulate non-volatile memory. This simplification is
reasonable, because Chain-specific operations (ChOut and
ChSync) only manipulate non-volatile memory, and there is
a trivial correspondence between volatile variable manipula-
tions in a conventional execution and in a Chain execution.
Without loss of generality, we consider ChSync, but not ChIn,
because ChSync is a generalization of ChIn, and ChOut, but
not MultiOut, because MultiOut can be expressed in terms
of multiple ChOut statements.

In a conventional execution, a memory write assigns a
value to a named variable, and a memory read observes
the value most recently written to a named variable. The
sequence of variable values observed by the reads in an
execution defines the program behavior. In a Chain execution,
a ChOut operation assigns a value to a named field in a
specified channel. A ChSync operation observes the most
recent value of a named field in a collection of specified
channels. The sequence of variable values observed by the
ChSync operations in an execution defines the program
behavior. We show that for all conventional executions, there
exists a Chain execution that has the same behavior. We start
from an arbitrary execution trace generated by an arbitrary
conventional program and we construct a Chain execution
trace that has the same behavior.

We consider an arbitrary conventional execution trace,
Econv, defined by a sequence of operations, writei(M[v],x)
and read j(M[v]), where indexes i and j denote positions
in the sequence and the operations are respectively a write
of value x to memory location v and a read from memory
location v. We begin constructing a Chain execution trace,
EChain, by initializing it with a copy of Econv. At this point,
EChain is not yet a valid Chain execution trace, because it
contains direct accesses to non-volatile memory. We assume
an arbitrary assignment of operations to tasks in the Chain
execution and define a convenience function, Task(c), that
reports the task containing operation c. In EChain, we replace
each writei(M[v],x) with a ChOut of value x to field F [v]
from task Task(writei) to each subsequent task that reads

1 We argue about the generality of uninterrupted execution, because a
conventional program does not complete in the presence of intermittence.
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that value before it is overwritten by another, later write. That
is, the ChOut associated with writei accesses channels

{(Task(writei),Task(read j)) | j > i and 6 ∃writek, i< k< j}.

Similarly, we replace each read j(M[v]) with a ChSync of
field F [v] from each preceding task that wrote to that field.
That is, the ChSync associated with read j accesses channels

{(Task(writei),Task(read j)) | i < j and ∃writei}.

Note that in the case of ChSync, we consider all prior writes,
because, as we note in Section 3.3.2, a task that reads a field
using ChSync cannot know which ChOut had produced the
observed value and must rely on ChSync to retrieve the most
recent value. We next argue that the constructed EChain has
the same behavior as Econv.

To show behavioral equivalence, we show that the se-
quence of variable values produced by the memory read op-
erations in Econv is the same as that produced by the ChSync
operations in EChain. A read j(M[v]) in Econv observes value
x written by the unique writei(M[v],x) that most recently
precedes that read — i.e. i < j and 6 ∃writek(M[v],y) for
i < k < j. The write is unique, because a conventional ex-
ecution is sequentially totally ordered. In the constructed
EChain, each ChSync accesses a collection of channels, each
of which may contain a value for field F [v]. As observed by
the ChSync, the channels are not sequentially ordered, un-
like writes with reads in Econv. However, by the semantics
defined in Section 3.3.2, a ChSync on field F [v] observes the
value of the ChOut to F [v] that was the most recent according
to an explicitly maintained timestamp. By our construction,
this ChOut operation corresponds to writei(M[v],x) in Econv,
where i = max{k | k < j and ∃writek(M[v], ·)}. This corre-
spondence implies that the value of the ChOut operation to
field F [v] is also x. Extending this argument to all read op-
erations in Econv and the corresponding ChSync operations
in EChain, we conclude that the sequence of variable values
produced by the execution traces is identical, implying that
the behavior of programs producing these traces is equivalent.

4. Chain Implementation
We implemented the Chain programming language primitives
described in Section 3 using a combination of compile-time
macros and a runtime library. The compile-time features
declare and allocate memory for tasks and channels. The
runtime features implement task sequencing and channel op-
erations. Figure 9 depicts the state that Chain uses internally
to implement execution context, tasks, and channels.

Hardware Assumptions. Our implementation makes few as-
sumptions about the underlying energy-harvesting hardware.
We assume some (but not necessarily all) memory is non-
volatile. This assumption matches existing energy-harvesting
devices (e.g., the Wireless Identification and Sensing Plat-
form (WISP) [34]). Chain runtime implementation assumes

T(){
...
}

Task Fn Task Context

Task Fn:  &T

DFList: f1,...

Global Context
(double buffered)

Current Task: T

Logical Time:17

Timestamp:  15

Data:  0xABCD

Field f1 

Timestamp:  9

Data:  0x0000

Field f2 

Task-to-task /
Multicast Channel

Timestamp[0]:15
Field f1 

Self Channel

Timestamp[1]:17

Data[1]: 0xF000

Data[0]: 0xABCD

Input Index: 1

Output Index: 0

Dirty Bit: 1

Timestamp:  16

Data:  0x1234

Field f3 

Figure 9: State used in our Chain implementation. The double-buffered
execution context tracks time and the current task. The task context keeps a
pointer to the task code and a “Dirty Field List” (DFList) containing updated
fields in the task’s self channel. Task-to-task channels and multicast channels
have the same representation and each of their fields contains a timestamp
and data. A self channel field contains two timestamps and data buffers, one
for input and one for output. A self channel field tracks which timestamp
and data buffer is input and which is output using the input/output indices;
the dirty bit is set if the field was updated.

single-word writes to non-volatile memory are atomic. This
assumption is reasonable for the single-cycle 16-bit micro-
controllers and the FRAM memory technology common in
energy-harvesting hardware. While atomicity of memory
writes given arbitrarily-timed power failures is not explic-
itly guaranteed by manufacturers, we have never observed
partially written words in non-volatile memory. For the run-
time library, the compiler must not be allowed to re-order
writes to non-volatile memory. This requirement does not
concern application code, because all Chain operations are
sequencing points.

4.1 Tasks
A task is composed of a task function that contains its code
and a task context object that contains its runtime state. A
task function is a C function with no arguments and no
return value. A task function can contain calls to arbitrary C
code (i.e., legacy/third-party code), but Chain’s consistency
guarantee does not extend to any such code that writes to
non-volatile memory. A task’s context consists of a pointer to
its function and state related to maintaining its self channel,
which we describe in Section 4.3. Each task object is statically
allocated and initialized in non-volatile memory.

4.2 Task Sequencing
The Chain runtime maintains a non-volatile global execution
context that stores the pointer to the current task execution
context and the current logical time; both objects are depicted
on the left in Figure 9. The NextTask control-flow directive
updates the current task context pointer in the global execu-
tion context to point to the context object of the next task.
Chain must atomically update the multi-word global execu-
tion context despite intermittence. Atomicity is ensured by
double buffering the global execution context and indirecting
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accesses to it through a pointer. While the current global ex-
ecution context is in one buffer, the NextTask routine sets
up the updated context in the other buffer. To commit the
transition, Chain sets the context pointer to point to the up-
dated buffer atomically using a single instruction. After a
reboot, the runtime transfers control to the task pointed to
by the current global execution context, which is retrieved
from non-volatile memory. On each task transition, but not on
reboot, the runtime increments the current logical time in the
global execution context, which clocks application progress
and is used to implement channel operations described in the
next section.

A key property provided by the Chain language imple-
mentation is that all state visible to a program after a task
transition is exactly the same as after a reboot. This property
frees Chain from the need for costly restore operations after
reboots that are characteristic of checkpointing systems. Af-
ter a transition, the Chain runtime invokes a task prologue
that idempotently sets up a task’s channel structures. Sec-
tion 4.3 provides a detailed explanation of channel setup in
the prologue. Importantly, Chain guarantees that the prologue
completes exactly once for each task transition. To guarantee
a single successful prologue execution the runtime saves the
logical time at the end of the prologue into the task context.
Chain only executes the prologue if the current time exceeds
the saved timestamp. After the prologue, Chain jumps to the
task’s function entry point.

4.3 Channels
In our implementation of Chain, channels are defined stati-
cally and accessed dynamically. A channel is defined by spec-
ifying its two end-points and a set of named, typed data fields.
We refer to a channel between different tasks as a task-to-task
channel to distinguish it from a self channel (Section 3.2). A
channel’s data field may hold a scalar value or an array value.
Chain implements array fields as a collection of scalar fields,
each of which can be referred to by an index. The fields of
each channel are specified by the programmer at compile
time using syntax defined in the Chain library header.

Each channel definition translates to a C structure type.
Internally, each member field of a channel is a nested struc-
ture. The nested field structure in a task-to-task channel has a
buffer to hold the data value of the channel field and a mem-
ber for channel metadata. The channel metadata field consists
of a last-modified timestamp, which is used by the ChSync
implementation described in Section 4.6.

The implementation of a self-channel is different from a
task-to-task channel. A self-channel field has two buffers for
data values — one for incoming and one for outgoing data
— and a member for metadata. The duplicated data buffers
in a self-channel field are used to implement the channel
exclusion principle introduced in Section 3.5. The metadata
field of a self-channel holds the timestamp of its last update
and the state Chain needs to decide which data buffer is its
input and which is its output (Section 4.4).

A channel declaration statically allocates a channel as a
non-volatile C struct (in FRAM). A channel’s symbol name
is the concatenation of the names of the channel end point
tasks. Consequently, ChIn and ChOut can resolve a channel’s
name using tasks’ names at compile time.

4.4 ChIn and ChOut

A task writes a value into a field of a channel using ChIn and
reads a value from a field of a channel using ChOut. These
directives resolve the channel’s memory location at compile
time by concatenating the names of the source and destination
tasks into the channel structure’s symbol name. A ChOut to a
field in a task-to-task channel writes a value into the field’s
data buffer and sets the field’s last modified timestamp to the
current logical time (from the global execution context). A
ChIn from a task-to-task channel’s field returns the value in
the field’s data buffer.

A self-channel field has an input and an output data buffer.
Its field metadata consists of two timestamps, an output buffer
index, an input buffer index, and a dirty bit. A ChOut to a
field of a self-channel writes the given value to the data buffer
identified by the output index, sets the dirty bit, and adds the
field offset to a list of dirty fields in the task object. A ChIn
from a self-channel returns the contents of the data value
buffer identified by the input index. On the next transition
the roles of the input and output value locations are reversed
for all fields that were marked as dirty. This takes place in
the prologue routine that runs once after a task transition,
as explained in Section 4.2. For each field in the dirty field
list with its dirty bit set, the prologue does an atomic swap-
and-clear that swaps the input index with the output index
and clears the dirty bit. We pack the index and dirty bits
into a single 16-bit word, making the atomic swap-and-clear
a single write instruction. Even if the prologue executes
repeatedly, each field undergoes exactly one swap, because
a swap only occurs if the dirty bit is set and the dirty bit is
cleared by the swap.

4.5 MultiOut

With a MultiOut primitive a task can channel a value to
multiple recipients using as much memory as a single task-
to-task channel. A multicast channel is like a task-to-task
channel in its compile-time declaration and field structure.
The channel’s name is the concatenation of its source with a
destination ID that uniquely identifies its destination list.

A MultiOut statement can refer to a multicast channel
only if its source task is the calling task, because MultiOut
constructs the channel’s name using the name of the calling
task. The ChIn and ChSync statements use the name of the
calling task and the multicast channel’s destination ID string
to refer to the channel. Our prototype does not prohibit reads
from a multicast channel by tasks that are not members of the
destination set. This limitation may be unintuitive, but does
not jeopardize Chain’s correctness.
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4.6 ChSync

A ChSync operation reads a value that may reside in one of a
set of channels. The ChSync primitive accepts a field name
and a set of sources. A source can be a task name, self, or a
multicast destination ID. At compile time ChSync resolves
each source into a channel name and locates the field’s last-
modified timestamp by the field’s name. At runtime, ChSync
compares the timestamps associated with the fields and
returns the data value of the field with the latest timestamp.

4.7 Modular Task Groups
A modular task group, or a “module”, encapsulates a group
of tasks for re-use. A module contains an entry task, an exit
task, an input channel, and an output channel. A module’s
input and output channels are implemented as augmented
task-to-task channels. The input channel stores the name of
the module’s successor task. ModEnter saves the name of the
successor task into the input channel and transfers control to
the entry task. A module’s entry task’s name is constructed at
compile time from the module’s name. ModPut and ModIn
translate into ChOut and ChIn on the module’s input channel.
ModGet and ModOut translate into ChIn and ChOut on the
module’s output channel.

Any task in the module can ModIn from the input channel,
because the input channel symbol name does not include the
calling task’s name. The output channel’s name includes the
name of the exit task, allowing only the exit task to ModOut to
the output channel. Our prototype implementation of modules
has a limitation that is not fundamental to Chain’s design. We
do not check that only a module’s member tasks access its
channels, and the programmer is responsible for correctly
using ModIn, ModOut, ModPut, ModEnter, and ModGet.

4.8 Release
Our implementation of Chain is distributed as a static library
with headers. It amounts to 644 lines of C code, which
compiles to 412 bytes or 0.6% of program memory on
the WISP platform. The source code is available at http:
//intermittent.systems.

5. Applications
We used Chain to implement two complete applications
and two software components, each representative of a
practical domain with varied control flow, compound data
types, and complex data structures. We built our systems
using the WISP5 energy-harvesting platform, which has a
TI MSP430FR5969 16-bit MCU with one core clocked at
8 MHz, 2KB of RAM, 64KB of non-volatile FRAM, an ac-
celerometer, and an RF energy-harvesting power system [34].
In addition to implementing the applications using Chain, we
also implemented each using DINO [23] and Mementos [23],
which are state-of-the-art runtime systems for intermittence.
We used the publicly released DINO implementation. We
wrote two variants for Mementos. One variant, Mem-NV,

uses volatile and non-volatile memory, but may experience
data corruption because Mementos does not keep non-volatile
memory consistent. The other variant, Mem-V, restricts mu-
table state to volatile memory, which is kept consistent by
Mementos, but limits the total size of the program state to
the small capacity of the volatile memory. Section 6 evalu-
ates these systems and Chain in correctness, performance,
memory profile, and developer effort.

Activity Recognition (AR). AR is a machine-learning
physical activity classification system used in prior work [23].
AR collects accelerometer samples into a sliding window and
filters out samples below a noise threshold. AR converts the
3-axis samples into feature vectors and classifies the window
as moving or stationary using a nearest neighbor classifier.
After classifying, AR updates the classification statistics for
each class and stores them in non-volatile memory for later
inspection. AR trains its model by having the user generate
reference activity for each class. In a correct execution, the
classification statistics must be mutually consistent: the class
counts must sum to the total count.

Cold-Chain Equipment Monitoring (CEM). A CEM
system continuously monitors a temperature-controlled en-
vironment (e.g., vaccine storage), logging temperature over
time. Our CEM system collects a stream of temperature sen-
sor readings and compresses them using LZW compression
[39] to maximize the capacity of the log. The compressed
stream is recorded in non-volatile memory for later decom-
pression and inspection. In a correct execution, the resulting
log is a valid, LZW-compressed data stream.

Data Encryption (RSA). This application encrypts a
message using RSA [33]. The public key of up to 2048
bits (configurable at compile time) is stored in non-volatile
memory, and can be changed after deployment. To the best of
our knowledge, ours is the first RSA implementation on an
energy-harvesting device using such a strong (large) key. Our
implementation thus enables an energy-harvesting device to
securely communicate with any base station without the need
to share a secret ahead of time.

Cuckoo Filtering (CF). A cuckoo filter is a general-
purpose data structure that approximately encodes set mem-
bership and supports element deletion. This data structure is
well-suited for filtering out redundant samples from a sen-
sor. Like a Bloom filter, a cuckoo filter may return a false
positive but not a false negative when queried for a value.
Our CF implementation inserts a fixed-length sequence of
pseudo-random values into a large filter. CF then looks up
the sequence of values in the filter. In a correct execution, the
count of affirmative lookups matches the sequence length.

6. Evaluation
We compare Chain to state-of-the-art runtime systems in
terms of correctness, performance, memory profile, and
developer effort. We deployed each application described
in Section 5 on the WISP [34] and ran it on harvested-
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Table 2: Correctness of observed application output.
Legend: 3= correct, 7= incorrect, ∗= correct if application fits in RAM.

App. Chain DINO Mem-NV Mem-V
AR 3 3 7 ∗
CEM 3 3 7 ∗
RSA 3 3 7 ∗
CF 3 3 7 ∗

energy. The input to AR was generated by the accelerometer
as we flipped the orientation of the WISP from vertical to
horizontal throughout the experiments. The AR model was
trained in the vertical and horizontal orientation for each
class, respectively. The input to CEM originated from the
temperature sensor without any deliberate manipulation of
the surrounding temperature. The plaintext for RSA was a
fixed 11-byte string stored in non-volatile memory. The input
values in CF were produced by a simple pseudo-random-
number generator with a fixed seed. We used the Energy-
interference-free Debugger (EDB) [9] to record the output
without affecting the energy state of the device. In our lab
setup the WISP harvested energy from a ThingMagic Astra-
EX RFID reader from a distance of 20 cm (10 cm for CEM).

6.1 Correctness
An application may produce an incorrect result on an inter-
mittently-powered platform if the runtime system does not
guarantee memory consistency (cf. Section 2.1). Table 2 sum-
marizes the outcome of running each application on harvested
energy. Applications written in Chain and DINO always pro-
duced correct output. This result follows from the memory
consistency guarantee made by these systems.

The Mem-NV version of every application either returned
an incorrect output or failed to complete on at least one trial.
AR generated percentages for moving and stationary classes
that did not add up to 100%. CEM entered an infinite loop
or produced compressed text with more compressed indexes
than uncompressed samples, which violates an invariant in
LZW algorithm. RSA produced undecryptable cyphertext.
CF reported false negatives to membership queries. Mem-
V guarantees correctness for an application only if its state
(stack and global variables) completely fits within volatile
memory. We discuss the implications of restricting state to
volatile memory in Section 6.3.

6.2 Performance
We ran each application in Section 5 on harvested energy
and measured the time it took to complete a fixed amount
of work. The amount of work was defined by application-
specific parameters that control the number of classifications
in AR, the size of the compressed log in CEM, the size of
the plaintext (equal to key size) in RSA, and the number of
buckets in the cuckoo filter in CF. We configured AR to 128
classifications, CEM to a dictionary of 280 entries, RSA to
128-bit keys, and CF to a filter with 256 buckets. These are the
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Figure 10: Application performance with Chain and state-of-the-art.

largest workloads that Mem-V can handle due to its memory
size limitation. In our trials each application completed its
workload within several seconds. We present detailed results
from a representative trial run in Figure 10.

Figure 10 shows the slowdown relative to Chain, defined
as a ratio of the respective execution times. Chain outperforms
DINO, the state-of-the-art, by 2x to 7.6x. We include Mem-
NV performance results for completeness, but emphasize that
its output is incorrect in trials that generate any output at
all (cf. Section 6.1). Mem-V running time is one or more
orders of magnitude above the alternatives. Mem-V spends
most of the time in saving and restoring its disproportionally
large checkpoints, each of which must include all program
state. Applications run faster with Chain, because Chain does
not use checkpoints. Chain eliminates the cost of saving
and restoring checkpoints as well as the work wasted on
checkpoints that are started without sufficient energy to
complete them.

6.3 Memory Profile
We characterized how Chain utilizes memory and showed
that Chain is always comparable with DINO and Mementos,
and in some cases Chain makes better use of memory. The
memory footprint of the runtime is not prohibitively high for
any of DINO, Mementos, or Chain. Chain’s footprint was
412 bytes (0.6% of memory on the WISP), compared to 582
bytes for DINO (30% larger than Chain) and 340 bytes for
Mementos (21% smaller than Chain). The most significant
memory cost for all three systems is the non-volatile memory
consumed by checkpoints and channels. Table 3 summarizes
the non-volatile memory footprint that we collected from the
application binaries. For Chain, the footprint consists of the
channel memory buffers. For checkpointing-based systems
(Mem-V, Mem-NV, and DINO) the footprint includes the
space reserved for a double-buffered checkpoint, as well as
non-volatile variables in Mem-NV and their versioned copies
in DINO. Mementos and DINO both conservatively use a
checkpoint buffer that can accommodate a checkpoint of all of

525



RAM (i.e., 2KB), amounting to double-buffered checkpoint
storage of 4KB.

The data show that Chain’s memory use is sometimes
less than, and sometimes more than that of the other sys-
tems for the same applications. Chain uses less memory than
checkpointing systems when the size of channel state is less
than the size of checkpoints and versions. Chain allocates
exactly as much memory as it needs, since its channel decla-
rations are available at compile time. In cases where Chain
uses more non-volatile memory (CF, CEM), the overhead is
due to replication of data in channels. In these cases, Chain
trades non-volatile memory consumption for the often dis-
proportionately large improvement in throughput and energy
efficiency that comes with eliminating checkpoints.

We also analyzed volatile memory consumption. Volatile
and non-volatile memory usage affect deployment cost dis-
proportionately. Non-volatile memory is orders of magnitude
cheaper than volatile memory, e.g., the largest MCU in the
MSP430FR family has 128 KB of FRAM but only 2KB of
SRAM. Chain does not change a system’s volatile memory
consumption. DINO requires enough volatile memory to hold
versioning data for non-volatile variables on the stack before
adding them to a checkpoint. Mem-V requires enough volatile
memory to hold all program state, making it impossible to
use for non-trivial applications on some MCUs.

Mem-V’s exclusive dependence on volatile memory com-
promises application performance, constrains the choice of
MCU, and limits the maximum distance to the energy-source.
For example, in CEM the compression rate is a function of
the size of LZW dictionary. The 2048-bit RSA would require
an MCU with at least 2KB of SRAM. However, purchasing
more RAM is not a solution if the RAM contents is part of
every checkpoint, as it is in Mem-V. Once the checkpoint
becomes large enough, the energy required to reach the next
checkpoint will exceed the energy available during one capac-
itor charge-discharge cycle and application progress will halt.
We directly observed this failure mode for our CEM system
at >10 cm from its energy source, where Mem-V stopped
working completely.

To illustrate the value of Chain’s multicast channel feature,
we calculated the memory saved in Chain applications by
using multicast channels instead of standard channels. As
explained in Section 4.5, our implementation of the multicast
channel shares one memory buffer between all destination
endpoints. Table 3 shows that using multicast channels is
valuable in all of our applications and using multicast chan-
nels on average consumes less than half as much memory as
a collection of standard channels would use to serve the same
purpose.

6.4 Developer Effort
To implement an application in Chain, the developer decom-
poses it into tasks and connects the tasks with control flow
statements and channel statements. A decomposition follows
naturally from a modular application design. A loop may

Table 3: Non-volatile memory usage (KB) with Chain and state-of-the-
art, measured when deployed on TI MSP430FR5949 MCU that features 2
KB of SRAM (volatile) and 64 KB of FRAM (non-volatile). Right-hand
columns show the benefit of Chain’s channel multicast feature: the number
of multicast operations used, the average number of destinations, and the
memory saved on multicast channels relative to an equivalent set of per-task
channels with ChOut statements.

App. Memory Consumption (KB) Multicast Benefit
Chain MemV MemNV DINO Ops. Avg. Dests. Savings

AR 2.5 4.1 4.2 4.2 1 2 50%
CEM 9.4 4.1 5.8 5.8 5 2.2 37%
RSA 4.9 4.2 4.4 4.4 11 3.6 90%
CF 16.2 4.1 4.6 4.6 5 3.4 73%

Table 4: Size of application implementations in Chain and DINO.

Chain DINO
Tsk. / LOC Tsk. LOC

App. Mod. Decl. Flow Chan. Tot. Bnd.
AR 11 / 0 61 19 49 519 8 435
CEM 12 / 0 82 19 63 412 13 264
RSA 20 / 2 103 28 119 831 34 644
CF 14 / 1 109 20 74 432 13 262

need to be converted into a task with the loop body and a tran-
sition to itself. To reuse code in a decomposed application,
with moderate effort tasks can be encapsulated into modules
(cf. Section 3.4). Decomposing into Chain tasks is similar
to placing DINO boundaries. We list the number of tasks
and modules in Chain and task boundaries in DINO for each
application in Table 4.

We compare the amount of additional code each appli-
cation requires in both Chain and DINO implementations
in Table 4. For Chain, lines are categorized into channel
declarations, task transition statements, and writes to and
reads from channels. Across our applications Chain code is
larger than DINO code on average by 42%, of which 60% are
straightforward declarations of tasks and channel fields. A
task declaration specifies the name of the task and its imple-
mentation function, and a channel declaration specifies the
channel’s endpoints and the types of each of its fields.

Although they burden the programmer, explicit specifica-
tions of channels are self-documenting and provide the neces-
sary information to statically check the usage of ChIn/ChOut
statements for correctness. An implementation alternative
could trade off the advantage of explicit specifications in favor
of reducing the amount of code required. Such an implemen-
tation could infer channel declarations from their usage in
ChIn/ChOut statements. A graph of inter-task data exchange
could then be constructed from the ChIn/ChOut statements,
and a channel allocated per each edge. The type of channel
fields can be inferred from the type of values that are being
written and read from the channel, with the exception of sizes
of array fields, which would be specified by explicit type
declarations. Channel field, type, and structure inference is
an especially compelling direction for future work on Chain.

526



7. Related Work
Related prior efforts addressed the progress [2, 18, 25, 32]
and data consistency problems of intermittence using check-
points [18, 32], versioning [23, 31], and duty-cycling [2, 5].
We also discuss work on idempotent compilation [11, 12, 41],
non-volatile memory management [7, 10, 13, 26, 27, 37],
transactions [14], and actor models [1, 3, 4, 20, 29].

7.1 Checkpointing
Mementos [32] first identified the need to preserve state
across failure periods to execute long-running programs on
energy-harvesting devices, like the WISP [34]. Subsequent
work [18, 25] explored the space of volatile state checkpoint-
ing with architecture and circuit support. All of these efforts
preserve progress by retaining volatile execution context. Un-
fortunately, volatile-only techniques are insufficient to ensure
correctness, since non-volatile memory accesses can give rise
to inconsistency [31], as we witnessed in our experiments in
Section 6. Based on this observation, DINO [23] used task
boundaries and non-volatile versioning to keep all of memory
consistent.

The main difference between Chain and these prior ap-
proaches is that Chain preserves progress and consistency
without the high cost of checkpointing or versioning. Chain
eliminates the time and space overheads of checkpointing.
Chain also enables strictly static memory allocation, not re-
quiring checkpoints, the size of which varies with call stack
depth and working set.

7.2 Duty-Cycling and Scheduling
Other prior work used duty-cycling to tolerate intermittence.
Hibernus [2] uses energy in a system’s existing decoupling
capacitor to preserve a limited amount of critical state, then
drops to an extreme low power state just before a power
failure. Hibernus assures limited consistency and progress,
as it collects some volatile state before a failure, but the
size of that state is limited by the size of the decoupling
capacitor (which is typically very small). DewDrop [5] is a
scheduler that analyzes available energy and the expected
cost of executing code regions. DewDrop executes a code
region if it expects to complete the code region without failing.
DewDrop compromises on progress and correctness, because
it does not persist any volatile state.

The principle difference between Chain and these ap-
proaches is that Chain assumes failures are inevitable and
uses idempotence to make tasks running at full duty-cycle ro-
bust to arbitrary failures. In contrast, these approaches spend
long periods of time sleeping, using their sparse duty-cycle
to execute only when failure is unlikely.

7.3 Idempotent Compilation
Prior work on idempotent processing [11, 12, 41] aimed to
make bounded code regions arbitrarily restartable. This line
of inquiry revolves around the idea of extracting idempotent

regions from a sequential program and leveraging their
idempotence for fault recovery.

The similarity between this work and Chain is the goal
of idempotence: idempotent regions for this prior work, and
tasks for Chain. There are several important differences. First,
this prior work assumes a continuously powered execution
in which consistency, but not progress can be compromised.
The difference in fault model is critical – a power failure ends
an idempotent region’s execution for this prior work, losing
all associated state and progress. Chain instead embraces
power failures of an intermittent execution through idempo-
tence and accommodates arbitrary power failures gracefully.
Second, this prior work focuses on volatile memory, limit-
ing the category of faults from which they can recover to
those that affect volatile storage. By contrast, Chain targets
systems with mixed-volatility memory and must ensure that
volatile variables are recomputable and non-volatile mem-
ory remain consistent across failures. Third, this prior work
explicitly targets surviving hardware value faults, recover-
ing from concurrency errors in multi-threaded software, and
handling exceptions. Chain differs greatly in purpose, focus-
ing on providing a new, reliable programming and execution
model for intermittence, rather than addressing these existing
reliability problems.

7.4 Mixed-Volatility Memory Consistency
A raft of prior work [7, 10, 13, 26, 27, 37] addressed mem-
ory consistency in the presence of mixed volatility and fail-
ures. Memory persistency [27] proposed a memory-fence-
like mechanism for ensuring the consistency of persistent
data. The work also studied relaxations of persistent data
consistency, framing all of their work in the context of ex-
plicitly multi-threaded, parallel programs. NV-heaps [7] pre-
sented new language and runtime support to ensure non-
trivial data structures stored in non-volatile memory remain
consistent. The work restricted pointer use and controlled
some data flow to provide strong correctness guarantees.
Other work provided whole system persistence [26] and file-
system-like [10, 13] correctness for non-volatile state.

Chain is similar to these systems because Chain, like all
of these systems, aims to keep the persistent storage on a
device consistent in an adversarial execution environment.
Chain is fundamentally different from these systems because
it targets devices in which failures are the common case and
consequently costly restart actions (like checkpointing or
scanning a log) are unacceptable. Instead, Chain enforces
channel exclusion, making tasks idempotent to keep non-
volatile memory consistent, despite arbitrary failures.

7.5 Transaction Processing
The fault tolerance demands of an intermittent system are
superficially similar to the fault tolerance demands of a trans-
action processing system (TPS) [14]. However, the problem
for intermittent systems is fundamentally different in domain
and purpose from TPS. A TPS expects a transaction (e.g.,
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a database update) to complete atomically, but allows it to
occasionally fail, as long as the database remains consistent.
In contrast, a Chain task on an intermittent computer is inter-
rupted by power failure repeatedly, but eventually completes –
i.e., TPS-like failure is not an option. Some prior work such as
Spheres of Control [14], transaction chopping [35], and geo-
distributed storage [42] decomposed transactions into chains
of sub-transactions, breaking the atomicity of the larger trans-
action. In constrast, in Chain, each task is independently
defined and atomic. Chains of tasks are loosely analogous to
chained transactions, but in Chain, by construction, no work
ever needs to be “rolled forward” [14] or undone on restart.

Transactional memory (TM) in hardware [17] and soft-
ware [6, 16, 36] also aims to make code atomic. Unlike Chain,
TM primarily targets parallel systems, and is does not exist
for intermittently-powered hardware. There is also a superfi-
cial similarity between Chain, which requires all code to be
in some task, and TCC-like memory models [15, 19] which
require all code to be in some transaction.

7.6 Actor Models of Computation
Chain defines a computational model and a language for in-
termittent systems as Actors did for concurrent distributed
systems [1]. The Actor model has inspired languages for
computationally constrained devices, such as embedded sys-
tems [3], sensor nodes [20], and spacecraft [4], but not for
intermittently-powered energy-harvesting devices. The Chain
model differs in purpose from the Actor model as Chain tar-
gets intermittence. Actors represent concurrency, are created
dynamically, and carry out computation only in response
to messages. In contrast, Chain tasks represent a sequential
program, are defined statically, and execute in a fixed or-
der specified by the task graph. Despite their differences,
both models encounter some of the same challenges. For
example, modules in Chain (Section 3.4) address the same
composition challenge that motivated “external actors” [1]
and, more recently, flexible interfaces between actors in the
form of dynamically-created message channels [29]. Finally,
the differences in the models have a direct effect on their
implementations: an actor system requires a communication
network and a dynamic actor instance manager, while Chain
performs most of its work at compile time.

8. Conclusion and Future Work
This work developed Chain, the first programming model
to provide intermittence-safety without the need for costly
checkpoints. Chain provides a task-granular progress guar-
antee and its channel memory model keeps data consistent.
Channels dispatch with the need to save and restore check-
points on reboots. Chain ensures consistency and progress
with 2-7x higher throughput than prior systems. Such a
throughput increase enables compute-intensive applications
that demand correctness, like 1024-bit RSA and LZW com-
pression, on energy-harvesting devices. Chain opens a promis-

ing new research direction around analyzing, optimizing, and
refining task-based intermittent programs, as well as in devel-
oping new, more sophisticated applications for intermittent
systems. An essential question for our future work is to de-
velop system support to size tasks to ensure that their energy
demand does not exceed the energy buffer on the device.
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